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A new iteration scheme is proposed for the solution of the ion optics of high current ion 
beams extracted from a plasma. The scheme (a) requires far less computational effort than 
other schemes; (b) converges for arbitrary perveance; (c) allows the solution of the problem 
far back into the extraction plasma and (d) is not geometry dependent, so it should be 
usable for a wide variety of situations. 

1. INTRODUCTTON 

We consider the extraction of high current ion beams from a plasma and the 
subsequent acceleration of these beams by electrostatic fields. This problem is of 
interest in the design of ion thruster rocket engines and high power neutral beam 
injectors for heating plasma containment devices. Specifically, we consider plasma 
near a plane boundary with holes in it as is shown in Fig. 1. Subsequent to passing 
through a hole, ions from the plasma are accelerated by an applied electric field. 
The problem can conveniently be divided into three parts: (a) solution of Poisson’s 
equation; (b) computation of ion trajectories with disposition of ion space charge; 
(c) iteration between (a) and (b) while inserting equilibrium electron space charge. 

Two methods, which differ in the initial condition of the ions and the treatment 
of the plasma electrons, are currently employed to deal with this problem. The first 
method [l] starts the ions on a surface in the hole where the electric field is taken to be 
zero and through which electrons do not penetrate. This is an approximation of 
dubious validity since there is no region of space where both the electric field and the 
plasma electrons are inconsequential. The second method [2,3] starts the ions on an 
equipotential surface in the sheath region of the plasma and includes space charge of 
electrons from the plasma which penetrates this surface. The approximate position, 
potential, and field of this surface as well as the initial directed ion speed are given 
approximately by a solution to the collisionless one-dimensional sheath problem [4]. 
A procedure has been worked out [2] which, given the emitting surface potential, 
adjusts the emitter position automatically so that the electric field is consistent with 
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the I-D solution. However, this presumes that the electric field is constant along 
such a potential surface in the 2-D problem. An alternative procedure is to place 
the emitting surface position farther into the plasma (-100 debye lengths from the 
boundary instead of -10 debye lengths) where equipotential surfaces are essentially 
planer with both the position and potential specified from the 1-D solution [4]. 
The advantage of this procedure is that the emitter position does not need to be varied 
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FIG. 1. Illustrative arrangement of high current ion source showing region of numerical simula- 
tion and boundary conditions on both potential and ion distribution function. 

throughout the calculation and the two-dimensional sheath problem is solved directly. 
The disadvantage is that Poisson’s equation must be solved in a larger region in which 
the source terms due to the ions and electrons are large and almost cancelling. 

A principal difficulty with the method in Ref. [2, 31 is that, with the inclusion of the 
plasma electrons, convergence of this very nonlinear problem is not trivial. In 
Section 2 we will review briefly the structure of the calculation we use. In Section 3 
we examine a previously used iteration scheme [3] and propose two different iteration 
schemes, both of which may involve orders of magnitude less computing and one of 
which can be used for arbitrary perveance. These two schemes we call the simul- 
taneous convergence scheme and the accelerated under-relaxation averaging scheme. 
In Section 4 we consider an example illustrating the iteration scheme considered. 
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2.A FORMULATION 

We consider the simultaneous solution of: (1) Poisson’s equation for the electric 
potential f$, 

v2+ = ; (N - n), (1) 

where E,, is the permittivity of free space, e is the magnitude of the electronic charge, 
and n is the ion density, 

n = 
i 

f dc, (2) 

u and f are the ion velocity and distribution function respectively; (2) Vlasov’s 
equation, which in the absence of magnetic fields is 

with a Boltzmann distribution [2] of electron densities, 

N = No exp(ef#T) (4) 

where 4 is zero in the plasma and negative elsewhere, N,, and T are the electron 
density and temperature in the plasma, and m is the ion mass. 

The solution of Eqs. (l)-(4) is sought in a region bounded by a surface where $, 
or V+, and f, or Vf, are specified. See Fig. 1. 

To take into account, in some sense, ion collisions with neutrals in the plasma, the 
ions are assigned a transverse initial velocity parallel to the sheath surface. One 
can either presume a Maxwellian ion distribution or use the ion velocity distributions 
obtained in the one-dimensional collisional sheath problem [5]. The initial ion 
transverse velocity causes a finite angular momentum which needs to be considered 
in 2-D problems phrased in cylindrical coordinates. 

2.B SOLUTION 

Poisson’s equation, Eq. (I), is solved by a finite difference method on a mesh with 
given source terms, using the method of successive over-relaxation [6]. Boundaries 
are treated with a procedure due to Hornsby [7]. The over-relaxation coefficient is 
automatically chosen using a method due to CarrC [8] for the maximum rate of 
convergence. The rectangular mesh is set up automatically by the program [7]. A 
stretched grid in the axial direction is chosen such that mesh points near the emitter 
are relatively close together. 

Vlasov’s equation, Eq. (3), is solved indirectly by solution of orbit equations for 
many initial orbits entering from the emitting surface toward the hole with velocities 
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appropriate to the initial velocity distribution specified. Considering electric fields 
produced by the solution of the Poisson equation and centripetal forces, the orbit 
equations are solved by a deferred limit integrator [9] and ion charge is deposited on 
the mesh points in accordance with the continuity equation. 

Electron charge is deposited directly on the mesh points via Eq. (4). 

3. ITERATION SCHEMES 

(a) The Sequential Convergence Scheme. This scheme, which has been used 
previously [3] converges everything separately as is shown in Fig. 2. Initially there are 
no source terms and Laplace’s equation is iterated [6, 71. The iteration continues until 
the relative change in potential at every mesh point is smaller than an error parameter 
(typically 10-4). From these vacuum fields electron space charge is deposited from 
Eq. (4). Then ion orbits are calculated and space charge deposited. At this point 
Poisson’s equation is iterated in an SOR scheme [6] with no addendum to the source 
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FIG. 2. Flow diagram for sequential convergence scheme. 
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terms (hereafter called linear iterations) until the potential is relatively unchanged 
from the previous iteration. The electron space charge is then recalculated from the 
resulting potential and under-relaxed, i.e., 

N new = ~&sv + (1 - a) NoId , (5) 

where 01 is the electron under-relaxation coefficient (typically 1O-2), which in this 
scheme is held fixed. After the electron charge is under-relaxad via Eq. (5), Poisson’s 
equation is iterated again. If after the first iteration the potential is changed, then the 
Poisson equation with fixed source terms is iterated again until converged as described 
above. If after the first iteration the potential remains unchanged, then the ion orbits 
are computed and ion space charge deposited. Eventually, when the ion orbits are 
computed and ion space charge is deposited on the mesh points, the whole process 
of linear iteration convergence and electron iteration convergence is started over 
until the ion optics, or the resultant potential, converges. 

This scheme uses the rationale that it is easier to compute the electron space charge 
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FIG. 3. Flow diagram for simultaneous convergence scheme. 
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via Eq. (4), than the ion space charge by Eqs. (2) and (3) and, therefore, the electrons 
are iterated more often than the ions. 

(b) The Simultaneous Convergence Scheme. This scheme, which is shown 
in Fig. 3, is very similar to scheme (a) except that it short-cuts the requirement of 
linear convergence before electron space charge is inserted. Each time Poisson’s 
equation is iterated and the potential changes from the previous iteration, the electron 
term is updated. Therefore, during each iteration both the linear and electron iterations 
are converging simultaneously. 

(c) The Accelerated Under-relaxation Averaging Scheme. This scheme is a 
significant departure from schemes (a) and (b), as can be seen from Fig. 4: (1) no 
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FIG. 4. Flow diagram for accelerated under-relaxation averaging scheme. 

attempt is made at converging the electron and/or linear iterations; (2) the potential 
is modified if necessary at every step of the calculation; (3) the electron under- 
relaxation is varied throughout the calculation. The modifications are made for dealing 
with arbitrary perveance problems. In high perveance cases the space charge forces 
in the extraction region may be extremely large and almost cancelling. Because of the 
extreme nonlinearity of the problem, we choose to do a very smoothly damped 
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average. If the iteration scheme presents us with a potential at some point that is 
more extreme than the extraction plasma potential, we set that potential to the 
plasma potential (or = the emitter surface potential). We are justified in doing this 
since from the 1-D analysis [4] the potential can never be more extreme than the 
plasma potential. In this scheme electrons are not under-relaxed (i.e., 01 = 1) the first 
time they are inserted after each ion iteration. Thereafter 01 is divided by a number, D, 
slightly bigger than unity (typically 1.02) upon each electron insertion. This effects 
an average over oscillations that tend to occur. The scheme iterates the ions when the 
potential changes little between iterations. This is bound to happen for any case, 
since eventually 01 will become so small that no change is being made in anything 
during the iteration. This procedure apparently converges, solves Eq. (1) in all the 
cases examined, and agrees with schemes (a) and (b) where their results are available. 

4. EXAMPLE 

For a typical ion source as shown in Fig. 1, we compare in Fig. 5 the number of 
linear iterations required for convergence as a function of relative perveance. Relative 
perveance is defined as the perveance divided by the Child-Langmuir [lo] space 
charge limited perveance obtained for ions without electrons, in the 1-D diode, 
whose length is the same as the gap between the accelerating electrodes and whose 
applied potential is the same as that considered in the cylindrical case. In Fig. 5 
the most convergent ion optics, and therefore the region of perveance of greatest 
interest, is indicated on the axis. The emitting surface is taken 100 debye lengths into 
the source plasma from the lower electrode. This is considerably farther back into 
the plasma than the classical sheath edge which for the 1-D problem is typically 
about 15 debye lengths. 

Shown in Fig. 6 is a typical solution for the ion trajectories and potentials (bottom) 
and the potentials calculated initially considering only the boundary conditions 
neglecting ion or electron space charge (top) with ion trajectories. The left most 
potential contour in Fig. 6 is a potential halfway between the source plasma potential 
and the potential on the first electrode. In the converged solution (bottom of Fig. 6) 
this potential contour is near the sheath edge. The emitting surface is 100 Debye length 
to the left of the first electrode and the relative perveance, P/PC,. , is l/3. 

In Fig. 5 we see that scheme (a), the sequential convergence scheme, requires the 
most computational effort and converges for the smallest range of perveance. Scheme 
(b), the simultaneous convergence scheme, requires far less computational effort 
and has a greater range of perveance in which convergence is possible. By making cy. 
smaller, as shown in Fig. 5, the range of perveance for which convergence is possible 
increases somewhat but the effort at smaller perveance is greater. Scheme (c) the 
accelerated under-relaxation averaging scheme appears to converge for all perveance 
considered in Fig. 5. The accelerating parameter D can be made bigger allowing 
even fewer iterations than shown in Fig. 5 but with a gradual loss in accuracy. 
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FIG. 5. Comparison of computational time for the three schemes considered as a function of 
perveance on the scale of the Child-Langmuir perveance. The arrow on the abscissa is the perveance 
where the ion beam is most convergent. 

Schemes (a) and (b) can be made to converge at higher relative perveance than shown 
in Fig. 5 if the emitter position is moved closer to the electrode. However, as mentioned 
before, in so doing the stipulation of the emitter conditions becomes less reliable. 

Since scheme (c) is not geometry-dependent, it should be usable for slot geometry 
or other configurations. Since it is explicit it can be used directly with a finite element 
as well as a finite difference computation. 
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